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A Fast Maximum  Likelihood  Estimation  and 
Detection Algorithm for Bernoulli-Gaussian 

Processes 

CHONG-YUNG CHI 

Abstract-In this  correspondence, we propose  a  fast  maximum like- 
lihood  detection and estimation  algorithm,  called  a  multiple-most- 
likely-replacement (MMLR) detector,  for  Bernoulli-Gaussian  pro- 
cesses  which are  distorted by a  linear  time-invariant  system and con- 
taminated by a  white  Gaussian noise. This new detector  works  as well 
as  the well-known single-most-likely-replacement (SMLR) detector. 
However,  the  former is computationally  faster than  the  latter. We dis- 
cuss two examples which demonstrate  the  computational  advantage of 
the  proposed  algorithm  using  synthetic  data. 

I. INTRODUCTION 
A  randomly  located  spike  train p ( k )  can  be  modeled  as  the  fol- 

lowing  product  model: 

P ( k )  = r ( k )  q ( k )  ( 1 )  
where q ( k )  is  a  binary  sequence  with  value  zero or unity  and r ( k )  
depicts  spike  amplitudes. q ( k )  = 1  indicates  that  a  spike  is  located 
at  the  time  point k with  amplitude r ( k ) .  On  the  other  hand, q ( k )  
= 0 indicates  that  there  is  no  spike  located  at  the  time  point k .  This 
product  model  has  been  applied  in  modeling  the  reflectivity  se- 
quence  in  reflection  seismology [ l l ,  [ 2 ] ,  141. 

Kormylo  and  Mendel  [3]  developed  an  iterative  single-most- 
likely-replacement  (SMLR)  detector  for  estimating p ( k )  using  a 
given  set  of  measurements z ( k ) ,  k = 1, 2 ,  . . . , N where 
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z ( k )  = P ( k )  * v(k) + n ( k )  

= c u ( i )  p ( k  - i )  + n ( k )  ( 2 )  
i = O  

in  which n ( k )  is  the  measurement  noise; v( k ) ,  k = 0, 1,  2, 

system (e.g.,  impulse  response  of  communication  channel,  seismic 
source  wavelet);  and p (  k )  is  the  desired  signal  sequence  (e.g., 
message,  reflectivity  sequence)  which  is  modeled  as (1). The  sta- 
tistical  assumptions  about r ( k ) ,  q(  k ) ,  and n ( k )  used by them  are 
the  following. 

. . .  , is the  impulse  response  sequence of the  signal  distorting 

(Al) r ( k )  is  white  zero-mean  Gaussian  with  variance C. 
(A2) n ( k )  is white  zero-mean  Gaussian  with  variance R.  
(A3) q ( k )  is  a  Bernoulli  process of zeros  and  ones with  the 

probability  mass  function 

(A4) Y ( k ) ,  n ( k ) ,  and q ( k )  are  independent. 
The  SMLR  detection  algorithm  was  developed by maximizing 

the  following  likelihood  function: 

Let q, (qr  ( k ) ,  i ) be a  test  sequence  associated  with  a  reference 
sequence qr ( i  ): 

Note  that k in q,(qr  ( k ) ,  i )  is a  parameter  instead  of  a  time  point. 
Let 

q r ( q r ( k ) )  = COI ( q r ( q r ( k ) ,  I ) ,  q t ( q r ( k ) ,   2 ) ,  

. 3 q r ( q r ( k ) ,   N ) ) .  ( 6 )  
The  likelihood  ratio  of qr = qr ( qr ( k )  ) to qr is  defined  as 

Note  that A,, ( k ,  qr )  is  the  likelihood  ratio of qr to qr where qr differs 
from qr only  at  the  time  point k .  Let k* be associated  with  the 
maximum  value  of A,, ( k ,  4,) > 1 where k E { 1, 2 ,  . . . , N } . 
Then  the  single-most-likely-replacement  test  sequence  is q;k = 
q,( qr ( k ” ) ) ,  and  the  likelihood  function  evaluated  at q;k is  at  least 
as  large  as  its  value  evaluated  at 4,. 

The  SMLR  search  algorithm,  initiated by q, = q ( O ) ,  computes N 
log-likelihood  ratios  corresponding  to N different qr sequences 
( qr( qr ( k ) ) ,  k = 1 ,  2 ,  . * , N ). The  most  likely qr sequence  is 
used  as  the  reference  sequence q ( ‘ ) .  If,  after i iterations,  we  obtain 
a  reference qr = q( i )  which i s  more  likely  than any  of  the  corre- 
sponding q, sequences,  then  the  search  stops  and q( i )  is  the final 
detected  sequence.  The  SMLR  detector  has  been  successfully  ap- 
plied  in  seismic  deconvolution  by  Chi et al. [2].  There  are  some 
other  existing  detection  algorithms  such  as  threshold  detector  [4] 
and  Viterbi  algorithm  detector  [5]  for  detecting q ( k )  and  estimat- 
ing r ( k ) .  These  two  detectors  are  noniterative  and so their  com- 
putational  load  is  constant. As mentioned  in  [4],  the  threshold  de- 
tector  is  optimal  when  wavelets  are  nonoverlapping.  When  wavelets 
are  severely  overlapped,  its  performance  is  worse than the  SMLR 
detector.  The  Viterbi  algorithm  detector  has  a very nice  parallel 
processing  structure  and its performance is comparable  to  the  SMLR 
detector.  The  reader  is  referred  to  [4]  and  [5]  for  details of these 
two  detectors. 

Although  the  SMLR  detector  works  well,  it  requires  a  fixed- 
interval  optimal  smoother [3], [4] for  computing A,, ( k ,  q,) for k 
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= 1 , 2 ,  * * .  , N to  add  or  to  remove  only  a  single  spike.at  each 
iteration.  A  considerably  large  computational  effort  is  required  in 
order  to  complete  the  procedure.  In  this  correspondence,  we  pro- 
pose  a  new  fast  detection  algorithm  based  on  the  same  statistical 
assumptions  and  likelihood  function.  The  proposed  detector,  which 
is  called  a  multiple-most-likely-replacement  (MMLR)  detector, 
works  as  well  as  the  SMLR  detector.  The  MMLR  detection  algo- 
rithm  is  structurally  the  same  as  the SMLR  detection  algorithm. 
The only  difference  between  these  two  detection  algorithms  is  the 
approach  of  updating  spike  locations  at  each  iteration.  The  MMLR 
detection  algorithm  requires  the  same  computational  effort  (an  op- 
timal  smoother)  as  the  SMLR  detection  algorithm  at  each  iteration. 
However,  it  adds or  removes I 2 1 spikes  at  each  iteration  where 
1 varies  from  iteration  to  iteration.  Therefore,  the  MMLR  detector 
is  computationally  faster  than  the  SMLR  detector;  this  multiple  re- 
placement  permits  a  greater  increase  in  the  likelihood  function  at 
each  iteration.  Both  the  MMLR  and  SMLR  detectors  guarantee  that 
the  likelihood  function  increases  at  each  iteration.  After  the  detec- 
tion  of q ( k )  is  completed,  the  estimation  of r ( k )  can  be  done by 
applying  Mendel's  minimum  variance  deconvolution  (MVD)  filter 

When  not  only q ( k )  and r ( k )  but  also  other  parameters  such  as 
v ( k )  and  statistical  parameters  associated  with q ( k )  and r ( k )  are 
unknown,  the  maximum  likelihood  deconvolution  (MLD)  algo- 
rithm [ l ] ,  [2],  [4]  can  be  used  to  estimate  all  unknown  quantities 
simultaneously. 

In  Section 11, we  develop  the  MMLR  detection  algorithm.  In 
Section 111, we  show why the  MMLR  detection  algorithm  works 
and  discuss  its  properties.  In  Section  IV,  we  discuss  two  simulation 
examples  which  show  the  computational  advantage  of  the  MMLR 
detection  algorithm  over  the  SMLR  detection  algorithm. We sum- 
marize  our  results  and  draw  conclusions  in  the final section. 

~ 1 ,  r41,  171. 

11. MMLR DETECTION  ALGORITHM 
Assume  that v(k) = 0 for k 6 [0, M )  and  that  we  are  given  a 

reference  sequence qr. Let Ai be  the  integer  set 

and  let ki be  the  time  point  where 

where B; is  the  integer  set 

with Bo = [ 1 ,  N 1, A. = 0, and nli I ki is  the  largest  integer  such 
that qr ( k )  = 0 for k E (n l i  - M ,  nli ) and nZi 2 ki is  the  smallest 
integer  such  that q, ( k )  = 0 fo rk  E (n2 i ,  nZi + M ) .  If nli does  not 
exist,  we  set nli = 1 .  If nZi does  not  exist,  we  set n2i = N .  Note 
that Ai E Ai+ and Ai n Bi = 0 for  all i .  

By searching  for ( k ; ,  nli ,  n2i, Ai, B i ) ,  i = 1, 2, . . . , 1 recur- 
sively,  the  MMLR  detected  sequence q* ( k )  is  given by 

where 1 is  the  smallest  integer  such  that  either Bl is  an  empty  set or 
A,, ( k ,  4,) 5 1 vk E Bl. In  other  words,  this  recursive  search  for 
k; stops  when  this  smallest 1 is  found.  Note  that q , ( k )  = 0 f o r k  E 
I';, 1 5 i 5 I ,  where 

The  sequence q* serves  as  the  reference  sequence  for  the  next  it- 
eration  of  the  MMLR  detector.  Observe  that qr and q* differ  in I 
locations,  and I can  be  different  at  each  iteration.  This  procedure 
is  iterated  until A,, ( k ,  q,) 5 1  for  all  1 5 k 5 N .  At  each  iteration, 
the  likelihood  ratio  for q, = q* with  respect  to qr can  be  shown  to 
be (see below) 

which is shown  in  the  next  section.  Therefore,  we  guarantee  that 
S increases  at  each  iteration. 

111. ANALYSIS OF THE MMLR DETECTOR 
In  this  section, we  analyze  the  MMLR  detection  algorithm.  Five 

properties  of  the  MMLR  detector  are  presented  in  this  analysis.  We 
need  the  following  theorem. 

Theorem 1: Assume  that v ( k )  = 0 for k $ [ 0, M ). Let D be 
the  integer  set D = ( nl - M, n2 + M ) and 

r = ( M k )  = 0, 
k E (nl - M ,  q) .U (n2, n2 + M I )  (14) 

where nl I n2. If two  reference  sequences d')(k) E I' and # ) ( k )  
E r, differ  in  only one  location m E [n l ,  n,],  then  the  associated 
likelihood  ratios  [see  (5)  and (7)] satisfy 

4 ,  ( k  4:") = 4,  ( k ,  d 2 ' )  vk 6 D. (15) 
The  proof  is  given  in  Appendix  A. 

Based  on  this  theorem,  we  can  show  the  following  properties  of 
the  MMLR  detector. 

Property 1:  Assume  that qr ( k )  is  the  reference  sequence  and 
q* ( k )  given by ( 1  1)  is  the  detected  sequence  at  a  certain  iteration. 
Then  the  likelihood  ratio, A:, comparing q* to q,, is  given by (13). 

Proof: Let 

for i h 1  and q i o ) ( k )  = q, ( k ) .  Note  that q* ( k )  = q j ' ) (k ) .  One 
can  also  see  that qj"(k)  E ri and q y - ' ) ( k )  E ri [see  (12)]  differ  in 
only  one  location k = ki E [nl i ,  nail c (nli - M ,  n2; + M )  c A; 
[see (S)]  and A; f l  Bi = [see (lo)]. By Theorem  1  we  see  that 

A,,(k,  qii))  = A, (k ,  qii-") V k  E Bi. (17) 

Note  that Arr ( k ,  4;')) = A,, ( k ,  qr )  for  all k E Bo. Therefore, 

A, ( k ,  qi i ' )  = A,, ( k ,  4,) vk E Bi, Vi 2 1. (18)  

Because ki E Bi - we  have  [see  (9)] 

S { q ~ " ( z } / S { q j ' - ' ) l z }  = A,(ki, qji-I))  

= 4, ( k ; ,  q r )  > 1.  (19) 
Therefore,  the  likelihood  ratio S { q* I z } / S (  q, I z }  is 

S { q * I z }  S { q ? J z }  S{41"lz} 

S { q , ( z }  ' S { q p l z }  i = l  S { q y l ) l z }  
A:=-= = n  

1 1 

= A,r (k; ,  $ - I ) )  = IT A,, (ki, q,.) > 1 
i =  1 i = l  

which  is (13). Note  that  whenever  the  test  sequence qr is  highly 
populated  at  a  certain  iteration,  the  set Bl may  be  a  null  set.  Then 
only  a  single  spike  replacement ( I  = 1 ) can  occur  at  this  iteration. 

Property 2: At  each  iteration,  the  MMLR  detection  algorithm 
searches  for  the  SMLR q sequence [ q $ ' ) ( k ) ,  see  (16)] at  the first 
recursion. In  other  words,  the  SMLR q sequence  is  used  as  the 
initial  sequence  for  the  following  recursive  search  for  the  MMLR 
q sequence.  Therefore,  when  the  number  of  changes  in  spike  lo- 
cation  at  each  iteration  is  artificially fixed to  be  unity,  the  MMLR 
detector  reduces  to  the  SMLR  detector. 

Property 3: At  each  iteration,  the  MMLR  detector  changes  at 
most I,,, = [ ( N  - 1 ) / M ]  + 1  spikes  where [ x ]  denotes  the  in- 
teger  part  of  x. 

Pruufi Let { j l , j z ,  * 1 - , j l }  = { k l ,  k,, * , k , }  withji  < 
ji + for  all i. The  maximum  value l,,, of I occurs  when j ;  + - j ;  
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= M ,  j ,  + M > N a n d  j l  - M < 1. It  is  easy  to see that l,,, = 

Property 4: For  the  case M > N - 1 (I,,, = 1 ), the  MMLR 
detector  is  equivalent  to  the  SMLR  detector. 

Property 5: The  same  amount  of  computation,  an  optimal 
smoother  for  computing A,,. ( k ,  qr),  must  be  spent  for  each  iteration 
for  both  the  MMLR  and  SMLR  detectors. 

Although  there  are  many  possibilities  that  the  number  of  spike 
replacement 1 might be only 1 for  some  iterations  before  conver- 
gence,  the  MMLR  detection  algorithm  is  much  faster  than  the 
SMLR  detection  algorithm  for  the  case  that  N >> M and X is  small, 
i .e.,  q ( k )  is  a  sparse  spike  train.  This  case  is  a  general  case  in 
seismology. 

[ ( N  - 1 ) / M ]  + 1. 

IV. COMPUTER  SIMULATIONS 
In this  section,  we  discuss  two  examples  which  illustrate  the 

performance  of  the  proposed  MMLR  detector  for  the  case  when  the 
q sequence  is  a  sparse  sequence. In both  examples,  we  generated 
a  Bernoulli-Guassian  sequence p ( k )  with  known  parameters X and 
C. p ( k )  was  convolved  with  a  known  wavelet v ( k )  to  which  white 
Gaussian  noise  with  known  variance R was  added  to  produce  the 
synthetic  data. 

For the first example, X = 0.04, C = 0.0225, R = 1.5503 X 
and  N = 400. The  impulse  response v ( k )  of  the  signal  dis- 

torting  system  taken  from  [3]  was  a  long  wavelet  with  a  broad  fre- 
quency  band  (see [8]) and  length M G 80. q ( k )  = 0 for  all k was 
used  to  be  the  initial  q  sequence  for  both  MMLR  and  SMLR  de- 
tectors. 

For  the  second  example, X, C,  N, p ( k ) ,  and  initial  q  sequence 
are  the  same as those  used  in  the first example,  but R = 1.2291 X 
lo-' and v ( k )  was  taken  from [6]. The  length  of  this  wavelet  is 
about  half  of  that  in  the first example.  This  wavelet  is  a  narrow- 
band  wavelet.  Some  other  simulation  results  were  given  in [9] in 
more  detail. 

For the first  example,  the  MMLR  and  SMLR  detection  algo- 
rithms  yielded  the  same  performance  (identical  results).  For the 
second  example,  the  MMLR  and  SMLR  detection  algorithms 
yielded  comparable  performance.  For  the  first  example,  the  SMLR 
detector  spent  14  iterations,  but  the  MMLR  detection  algorithm 
spent  only 5 iterations  for  convergence.  For  the  second  example, 
the  SMLR  detection  algorithm  spent  28  iterations,  but  the  MMLR 
detection  algorithm  spent  only 10 iterations. In other  words,  for 
these  two  examples,  the  MMLR  detection  algorithm  was  about 
three  times  faster  than  the  SMLR  detection  algorithm  and  yielded 
comparable  performance. 

V. SUMMARY AND CONCLUSIONS 
In this  correspondence,  we  proposed  a  new  iterative  maximum 

likelihood  detection  algorithm,  the  MMLR  detector,  which is  com- 
putationally  faster  than  the  well-known  SMLR  detector,  for  Ber- 
noulli-Gaussian  processes.  An  initial  q  sequence  is  needed  for  both 
detectors.  Both  detection  algorithms  are  suboptimal  maximum  like- 
lihood  detectors  and  yield  comparable  performance.  At  each  iter- 
ation, 1 ? 1  spike  locations  are  updated  such  that  the  likelihood 
function  is  increased.  The  value  of I varies  from  iteration  to  itera- 
tion,  but  the  computational  effort  is  equivalent  to  an  optimal 
smoother no matter  what  the  value  of 1 is.  Although  there  are  cases 
that  the  MMLR  detector  reduces  to  the  SMLR  detector,  the  MMLR 
detection  algorithm  is  much  faster  than  the  SMLR  detection  algo- 
rithm  for  the  case  that  N >> M and X is  small,  i.e., q ( k )  is  a  sparse 
spike  sequence.  This  case  is  a  general  case  in  seismic  applications. 
We discussed two  simulation  examples  for  this  case. 

The  strategy  of  the  proposed  MMLR  detector  for  changing  a 
spike  location  during  each  iteration  may  not  be  the  most efficient 
one.  Other  strategies  may  improve  the  speed  of  the  MMLR  detec- 
tor. We  leave  this  task  for  future  research. 

APPENDIX  A 
PROOF OF THEOREM 1 

Pro05 Kormylo  and  Mendel [3] showed  that 

X + pk  In - 
1 - X  

where 

fk = v;o-'z, 

ak = v;Q-lv),, 

L ( N -  1) v(N'-  2) - * * ' ' 1  v(0) 

and vk is  the kth column  of V. 
From  (Al),  (A2),  and  (A3),  we  see  that  only  the  following  two 

equations  need  to  be  shown  in  order  to  show (15). These  equations 
are 

v l Q - l  - 
k 1 Z - VLQ;'Z, Vk $ D ('49) 

and 

vLQ;'vk = vLQ;Ivk, v k  D ('410) 

where Q1 = E[u' 1q = q:"] and Qz = E [ u '  / q  = q:2j]. Next, 
we  show  (A9)  and  (A10). 

Because 
N 

Qz = C ,x q!2)(i) vivi + RZ 
I =  I 

N 

= C q! ' ) ( i )v iv[  + RZ 
i= 1 

+ C(q$"(m) - qj-lj(m)) u m v ~  

= 01 + CdmV,vh ('411 1 
where 

dm = q!2)(m) - qf."(m).  (A121 

By matrix  inversion  identity,  we  have 

Thus, 

and 

In Appendix B, we  show  that  for  a  sequence  q E r and m E [ n ,  , 
nz],  the  associated  covariance  matrix Q [see  (A5)]  satisfies  the  fol- 
lowing  equation: 

vjQ-lv, = 0 v k  D. ('416) 

Therefore,  the  second  terms  of  (A14)  and  (A15)  are  zero fork  $ A  
and m E [ n ,  , n 2 ] ,  and  this  proves  (A9)  and  (A10)  as  required. 
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APPENDIX B 
PROOF OF (A16) 

Proof: For a sequence q E r from (A5) we have 

62 = CVQV’ + RI 
N 

= C ,x q ( i ) v i v j  + RI 
I =  1 

= JI + 52 + J3 + RI 

where 
nl - M  

J1  = C q( i )v iv i ,  
i =  1 

and 
N 

where 11, I, ,  and I3 are identity  matrices  with  dimensions ( n l  - 1 ) 
X ( n ,  - l ) ,  (n ,  - n, + M )  X ( n 2  - nl + M), and ( N  - n, - 
M + 1 ) X ( N  - n2 - M + 1 ), respectively.  Thus, 

a-’ 

0313) 

(B2)  directly computing v;Q-’v, with rn E [ n l ,  n 2 ]  using (B13) proves 
that (A16) holds. 
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Let us simplify J 1 ,   J 2 ,  and J 3 ,  respectively. From (B2), we see that 

where V I  is an ( nl - 1 ) X ( nl - M ) matrix and 

r 4 0 )  0 . . .  O l  
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where V2 is an ( n 2  - nl + M )  X (n2 - nl + 1)  matrix with the 
same form as V I  and Estimation  in  White  Noise  Using State-Variable 

Q2 = diag ( q ( n l ) ,  q(nl + 11, * , q(n2)).  (B9) 
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Similarly, we have 

where V, is an ( N  - n2 - M + 1)  X ( N  - n2 - M + 1)  matrix 
with  the same form as V I  and 

Q3 = diag ( d n 2  + M I ,  4 1 2 2  + M + I ) ,  . . . , q ( N ) ) .  

(B11) 
Substituting (B5), (B8) ,  and (B10) into (Bl) gives 

QI 7 + RZI 

0 0 

n =  CV2Q2V4 + RIZ 0 

0 CV3Q3 Vi + R I ~ J  1 
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Abstract-This correspondence presents a statistical analysis of fre- 
quency estimation using state-variable balancing for a single sinusoid 
in  the  presence  of additive noise at high signal-to-noise ratios. The cal- 
culated variance is compared to the performance of the frequency es- 
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